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This paper presents the development of a mesh adaptation module for a multilevel Cartesian solver.
While the module allows mesh refinement to be driven by a variety of different refinement parameters, a central
feature in its design is the incorporation of a multilevel error estimator based upon direct estimates of the local
truncation error using 

  

ττττ

 

-extrapolation. This error indicator exploits the fact that in regions of uniform Cartesian
mesh, the spatial operator is exactly the same on the fine and coarse grids, and local truncation error estimates
can be constructed by evaluating the residual on the coarse grid of the restricted solution from the fine grid. A
new strategy for adaptive h-refinement is also developed to prevent errors in smooth regions of the flow from
being masked by shocks and other discontinuous features. For certain classes of error histograms, this strategy
is optimal for achieving equidistribution of the refinement parameters on hierarchical meshes, and therefore
ensures grid converged solutions will be achieved for appropriately chosen refinement parameters. The robust-
ness and accuracy of the adaptation module is demonstrated using both simple model problems and complex
three dimensional examples using meshes with from 10

 

6

 

 to 10

 

7

 

 cells.

 

1 Introduction
HILE error estimation using local gradient recovery
techniques has long been popular in structural mechan-

ics and other disciplines governed by elliptic systems,[1] such
rigorous error estimates are generally not available in fluid
mechanics where the governing equations contain non-self-
adjoint operators. As a consequence, error estimation and
adaptation for fluid mechanics has evolved over a different
path. The simplest methods in the literature are gradient and
undivided difference-based feature detectors.[2][4]  While
these methods have been extremely successful for various
classes of problems,[2]-[7]  their lack of formalism makes
them difficult to apply blindly to problems far from estab-
lished experience. Indicators based upon estimates of inter-
polation error[7][8][9]  lend some of the missing formalism.
However, since these essentially compute the local curvature
of a representative variable or combination of variables, they
are not clearly superior (or different from) straight feature
detection.[5] The multilevel error estimators from the litera-
ture on Adaptive Mesh Refinement (AMR) were among the
first Richardson extrapolation-like error estimators[10][11][12]

but have been only narrowly used outside the AMR commu-
nity. More recently, there has been interest in multilevel error
indicators which use the residual of a higher order interpola-
tion of the existing solution to estimate the local
error.[13][14][15] This approach is attractive since it can be
combined with solution of an adjoint problem to produce a
mesh adaptation strategy that seeks to minimize error in a
specific integral quantity of engineering interest.[13]-[16] The
hope of these techniques is that, for the cost of the adjoint
solution and Jacobian storage, one can produce a mesh that
reduces only those errors that are important to the problem at
hand, rather than simply equidistributing the error. 

While the research on adjoint-based mesh optimization
very exciting, two drawbacks make it currently unattractiv
for a general purpose analysis code. First, if the Jacobians
not already present in the solver, it is an expensive prop
tion to form them solely to drive the adaptation. Second
and more fundamentally, many problems of interest ha
competing requirements that cannot always be encapsul
into a single output functional. For example, a user may w
to optimize a single simulation for lift, drag and pitchin
moment. While multipoint optimization is currently an are
of research interest, results are not yet in-hand. 

In this paper, we develop a new multilevel adaptation mod
for use on adapted Cartesian meshes with embedded bo
aries. Figure 1 shows a sample hierarchy of such meshes 
by a new, parallel multigrid solver.[17] The fact that these
coarse meshes can be automatically generated makes m
level error estimation a viable alternative, even for gri
around very complex geometries. Seeking to take advant
of this fact, we explore Richardson extrapolation-like err
estimators which exploit the hierarchical nature of adap
Cartesian grids. Even without the sensitivity information pr
vided by adjoint-based approaches, the module will still of
huge savings over a priori mesh enrichment. The estimator
we present are light-weight and both fast to implement a
execute. They also leverage much of the machinery alre
built into many multigrid solvers.

Since Cartesian grid refinement is restricted to cell subd
sion (h-refinement), the approach is intrinsically discret
There exists a necessary reliance upon a refinement thres
which selects cells destined for subdivision. Our work exa
ines the topic of threshold selection in detail. We develop
methodology for robustly setting a threshold which al
ensures consistency of the adaptive process. The appr
both controls the level of error in the domain and equidistr
utes the remaining error as fast as possible within the res
tions of hierarchical (nested) refinement. Given a rob
strategy for setting the adaptation threshold, adaptive ca
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may be fully automated.  This  reduces the sensitivity of the
results to user experience/intervention which has long been a
drawback of adaptive methods.

2 Multilevel Error Estimation
Multilevel Richardson-type error estimators like those in [12]
are attractive because of their low cost and firm theoretical
underpinnings in smooth solutions. In addition to developing
refinement parameters based on these estimates, we also
develop first and second-difference based feature detectors
which can serve useful roles as refinement parameters in
practical examples.

2.1 Local Truncation Error Measurement
Consider the 1-D wave equation  discretized
with forward Euler in time and some numerical spatial differ-
ence scheme using a timestep k, and a cell dimension h, 

.  (1)

 is the discrete approximation to the continuous solution,
u(x, t), in cell j at time n, while FL, j and FR, j are the numeri-
cal fluxes through the left and right boundaries of j and con-
tain the details of the spatial operator. The difference of the
numerical fluxes is the residual and the discrete equation can
be written more compactly as

,  (2)

where the discrete residual operator R(•) now contains all
details of the numerical flux balance for cell j. 

The local truncation error, LTE, measures how well the dis-
crete equation models the actual PDE throughout the domain.
It is defined by replacing the approximate solution  with
the exact solution u(x, t) in equation (2). Since  exactly
satisfies the difference equation, the exact solution will not,
and the difference will be the local truncation error,
LTEh,k(x,t).

 (3)

If the problem reaches a steady state, th
 and we can drop the dependence o

time. 

 (4)

Equation 4 is instructive since it relates the local truncati
error to the discrete residual operator R(•) and the cell dimen-
sion h. Furthermore is clear from the derivation that in mul
ple dimensions  where d is the number
of spatial dimensions of the domain. 

2.2 Local Truncation Error on Uniform Cartesian 
Meshes
Equation 4 is useful since it permits direct measurement
the local truncation error of a particular numerical method 
an actual computational grid for any problem that has 
exact solution. One such example is the supersonic vor
model problem used in reference 18. Figure 2 outlines 
problem and shows 4 sample telescoping meshes. The a
meshes used had from 130 to 7800 control volumes. A
initialization with the exact solution, the local truncatio
error was computed within each cell by dividing the residu
by the cell volume (following §2.1 and eq. (4)) using th
Euler solver in reference 17 without limiters.

The L1 norm of the LTE in density was computed for each
mesh and is displayed in figure 3 as a function of the num
of cells in each mesh. Performing a regression analysis on
Cartesian mesh data reveals a slope of 2.11. For smooth s
tions, one can show that the global error is also seco
order[19]. 

Figure 1: Hierarchical sequence of partitioned meshes around lifting body configuration used by parallel
flow solver of ref. [17].
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For comparison, figure 3 also contains the results of the same
experiment performed with three types of body-fitted grids:
(1) regular, nearly unit aspect ratio quads, (2) right triangles
made by subdividing the quads, and (3) a “quality” triangula-
tion[20] in which no angle was less than 29°. All methods
used the same numerical scheme. While the details of this
experiment are contained in the Appendix, figure 3 displays
the results. The asymptotic slopes of all four mesh types are
shown in the figure. We note that the slopes of all but the
“quality” mesh are similar but that the level of error on the
Cartesian grids is consistently 6 to 10 times lower than the
other grids over the full range of problem sizes. While these
results may be too narrow to generalize, this figure empah-
sizes the fact that since LTE measurement is bascally a flux
balance, even minute irregularities in the mesh can produce

subsantially higher local errors since we depend on the s
traction of two large numbers to produce a near zero resu

2.3 Estimation of LTE on Nested Multilevel Meshes
Since the LTE can be computed for each cell in the domain,
provides an excellent basis for constructing a refinem
parameter within each cell. Unfortunately, since few pro
lems of practical interest have an exact solution, we m
develop a method of estimating the LTE within each cell. 

The fact that we could reasonably draw straight lines throu
the data in figure 3 established the local and global orde
the method. We can express this more formally by recall
that for a discrete method with local order p and a smooth
solution, there exists a constant Clte such that

.  (5)

Section 2.2 also established that for the solver in referen
17, p was around 2 when  is the 1-norm. Furthermor
since the RHS of equation 5 vanishes for small h, the method
is obviously also consistent. Consistency implies that wheh
is small, the discrete solution Uj,h in cell j of a mesh will be a
good approximation to the exact solution , and th
statement is the basis of our multilevel error estimation p
cedure.

Assume that the numerical method has converged on a 
grid with mesh spacing h so that the residual of the discret
solution will be zero for every cell j in the domain. 

 (6)

Since the method is consistent, the current discrete solutio
assumed to be close to the exact solution, . 
estimate of the local truncation error on a coarse grid w
mesh spacing H can then be written by substituting the dis
crete solution on the fine grid for the exact solution in equ
tion 4.

 (7)

Following equation 7 we obtain an estimate of the LTE on the
coarse grid by first restricting the discrete solution on the fi
grid  to a coarser grid using the interpolation opera

, and then evaluating the discrete residual of the restric
solution on the coarse grid. Since Uj,h satisfied the numerical
scheme on the fine grid, the restricted solution  w
not, in general, produce exactly zero residual on the coa
grid. Thus, in the same way that the exact solution provide
means of measuring LTEh in §2.1, the discrete solution on th
fine grid provides a method of estimating the error on t
coarse grid. Adaptively refined Cartesian meshes n
exactly. Therefore, the residual operator R is exactly the same
on coarse and fine meshes. This permits us to apply equa
5 on a cell-by-cell basis. The coarse grid estimates are t
used to trigger cell refinement on fine grid. This method 
error estimation is known as τ-extrapolation within the multi-
grid community,[21] and the perfectly nesting residual opera
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Figure 2: Overview of supersonic vor-
tex model problem from ref. 18
used to investigate local truncation
error., at conditions: Min = 3.0,
pin = 1/γ, ρin = 1, ri = 1, ro = 1.9.

1234

Figure 3: L1 norm of LTE in density for supersonic vortex
model problem on sequence of 4 meshes. The asymp-
totic slope of each curve is labeled. Further details of
this experiment are presented in Appendix A. 
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tors that occur on Cartesian grids makes its use extremely
attractive here. Related work was done in [12] using a differ-
ent estimation technique.

In the present work, the restriction operator  is a volume
weighted average, which is the same as that used by the mul-
tigrid smoother used for convergence acceleration. By using
the prolongation operator from the multigrid scheme as well,
we are able to construct refinement parameters on the fine
mesh for the cost of one restriction, one coarse mesh residual
evaluation and one prolongation. Since these operations use
machinery which already exists in the multigrid solver, they
may be implemented with little effort.

2.4 Mesh Irregularities
The preceding section examined error estimation on hierar-
chies of uniform Cartesian meshes. Adaptively refined Carte-
sian meshes, however, introduce some real-world
complications which need discussion. As mentioned in the
final paragraphs of §2.3, the multilevel error estimation pro-
cedure relies upon use of the same spatial operator R on both
the fine and coarse meshes. While RH and Rh are clearly the
same in uniform regions of the grid, at adaptation boundaries
and cut-cells the situation merits closer examination.

Figure 4 depicts a sample fine grid (a) and the corresponding
coarse cells (b) near a simple refinement boundary. The adap-
tation boundary introduces irregularities into the connectivity
graph which locally changes the residual operator. Thus, on
the fine mesh (fig. 4a) all the cells which are immediately
adjacent to the adaptation boundary have irregular stencils.
The situation is the same on the coarse mesh (Fig. 4b) and
since the residual operators on the two meshes must be iden-
tical for equation (5) to hold, the multilevel error estimator
from §2.3 can’t be accurately constructed for the fine cells
shown shaded in figure 4a. Since this difficulty is associated
with mesh irregularity, it appears in the residual operator of
cut-cells as well. 

While the formal basis for local truncation error estimation
makes it preferable to straight feature detection, there are
several drawbacks that make them difficult to use - even for
Cartesian multilevel meshes. First, for a reliable error esti-
mate, the same stencil needs to be applied to both the coarse
and fine grids. Thus, at mesh irregularities such as grid inter-
faces and cutcells, the procedure described above does not
produce a reliable estimate. Colella et al.[22] present a nice
treatment of this problem in which the estimate is multiplied
by the number of cells of that type. In essence, this scales a
cell's contribution to the error by the number of affected cells.
While the local truncation error at an interface is larger than
at a uniform cell of the finer or even the coarser level, related
work on convergence theory for non-uniform grids suggests
that the estimate is still overly pessimistic.[23][24] (These
results point out that its possible for O(1) LTE to still pre-
serve O(h) global accuracy.) At present, we simply ignore
error estimates at interfaces and cut cells, and rely on a buff-
ering procedure to supply error values using piecewise con-
stant extrapolation of the error estimates from neighboring
cells.

Inspection of figure 4 demonstrates that this irregular
affects a larger portion of the mesh than one may initia
suspect since the cell next to an interface has its gradient
culation affected. This cell in turn contaminates the stencil
a cell two away from the interface. As was demonstrated
figure 3, even a minor irregularity like this can lead to dr
matically higher LTE. Additionally, since it is the coarse grid
which provides the estimates, the pollution can extend as
as 4 cells from the interface on the fine grid, so that the fi
grid cells have no reliable estimate of their own (cf. fig. 4). To
produce grids with a stencil of 5 regular cells in each dire
tion, large regions of uniformly refined cells need to be ge
erated in the mesh. Although τ-estimates have been used wit
great success in block structured AMR methods, they 
somewhat more difficult to implement on unstructured mul
level Cartesian. Asymptotic arguments contend that irregu
cells are confined to only O(N2) cells in a 3-D mesh with
O(N3) cells. In practice however, even reasonably fi
meshes can have as many as 30% of the cells contamin
by irregularity.1 When the neighbors of cells directly affecte
are also counted, LTE estimates on over half the mesh ma
have some contamination.

A second problem with LTE estimates is the need for a some
what reliable solution to have already been computed. T

Ih
H

1. The situation is worse on coarse meshes where the differ-
ence between N3 and N2 is not as great.

a b

(a) Fine Mesh

(b) Coarse Mesh

Cells with irregular 
stencil on coarse mesh

Cells with irregular 
fine mesh stencil

Figure 4: Illustration of difference stencils against adapta
tion boundary between cells of different levels. Cells in
the shaded region of the fine mesh restrict their solutio
into the corresponding coarse mesh shown. Since t
residual operator on this coarse mesh is different fro
that in the corresponding cells on the fine mesh,  eq.5
not valid. 
- 4 -
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approximate solution should be in the asymptotic region for a
valid error estimate. This observation leads to a somewhat
different strategy than that usually followed when using fea-
ture detection. Feature detectors generally perform well even
when starting from a very coarse grid, making possible many
cycles of adaptive refinement. For the LTE based refinement,
our strategy is to start with a fairly refined initial grid, and
only use two or three additional cycles of LTE driven adap-
tive refinement. In the examples here the initial grid uses
geometry based refinement only, but initial grids generated
from feature-detection based refinement could also be used. 

2.5 Prespecified Adaptation Regions
Both the LTE estimates and feature detection approaches suf-
fer from the difficulty of localizing them to regions of inter-
est. For example, errors in the wake behind a wing persist for
quite a distance downstream. However, if a user is interested
in the pressure distribution on the wing, research suggests
that the wake region doesn’t need much mesh refinement. In
the present work we simply allow the user to define a pre-
specified (Cartesian) region in which adaptation is permitted.
While not particularly elegant, this approach is adequate in
practice. 

2.6 Feature Detection
Feature detection attempts to use the current discrete solution
to determine where the mesh needs enhancement. Common
schemes use first or second-order undivided differences and
gradient information of various flow quantities. They attempt
to “smooth out” computational space in hopes of producing a
uniform error distribution. 

Since the link between flow features and truncation error is
not as formal as the Richardson-like LTE estimates discussed
earlier, approaches in the literature vary significantly and
everything from gradients and second derivatives to unscaled
and scaled differences have been used.[2][3][4][5][26]  

In 1991 Warren et al.[26] showed that since gradients and sec-
ond derivatives stay approximately constant with mesh
refinement, they make poor refinement parameters. A cell
with a high gradient will continue to have a high gradient
even after subdivision. From the standpoint of grid conver-
gence, we note that if the refinement parameter is to act as a
substitute for the real LTE it should have the same asymptotic
behavior as the LTE in smooth regions of the flow. For a pth-
order scheme, this means that halving the mesh should
reduce the error by 2p. 

The LTE of a second-order scheme reduces by a factor of 4
with 2:1 refinement. For a first-difference based quantity to
mimic this behavior it must be scaled by the local mesh size,
h. In one dimension, this leads to a first difference based
refinement parameter of the form:

 (8)

which is a normalized version of the first difference parame-
ter advocated by Warren et al.[26]

Similarly, a second difference based parameter should rem
undivided to give the same behavior.1 

 (9)

The 1-D refinement parameters in eqs. (8) and (9) can
extended using a finite volume approach. This produce
vector refinement parameter, with components for each of
cell’s dimensions. The first difference based refineme
parameter in the kth direction of cell j is:

 (10)

where  is the unit vector in the kth direction.

These vector refinement parameters can be used to drive 
isotropic and anisotropic cell subdivision as discussed in r
erence [4], and a similar approach may be used for the 
ond difference based parameters. 

Popular choices of φ are the density, velocity magnitude o
sometimes the local static pressure. In addition, combinati
of these scalars are also possible. The investigations in 
tion 4 examine the use of both density and velocity mag
tude for detection.

3 An Optimal Strategy for h-Refinement
The adaptation strategy seeks to refine the mesh using
LTE estimates or other refinement parameters from §2
improve the solution. The algorithm takes the refineme
parameters from section 2 as input and returns a bool
refinement tag for each cell in the fine mesh. AlgorithmA
outlines the adaptation procedure. 

Algorithm A:  Adaptation Strategy

Input: Vector of normalized refinement parame
ters for each cell on fine mesh, 

Output: Vector of cells tagged for h-refinement .

A.1 Tag: Apply the adaptation criteria a(•) to the normal-
ized refinement parameter to produce a vector 
tagged cells. 

A.2 Rules: Modify the set of tagged cells to ensure th
validity and smoothness of the output mesh. 

A.2.1 Buffer: Add buffer layers of tagged cells

A.2.2 Smoothness: Filter for island/void suppression.

A.2.3 Validity:  Ensure adaptation boundaries do n
exceed 2:1. 

A.3 Output final vector of tagged cells  for subdivision.
rj hj

∆φj

φj
-------- hj

2 ∇φ j

φj
---------= =

1. Eq. (9) differs from that presented in ref. [26] (eq. 15) 
since their parameter is re-scaled by the local mesh dimen-
sion and will therefore vanish faster than the LTE as the 
mesh size is decreased.

rj

δ2φj

φj
----------

φj 1 2⁄+ 2φj– φj 1 2⁄–+

φj
----------------------------------------------------- hj

2 ∇ 2φj

φj
-----------= = =

rj k, hj k,
2 ∇φ j k̂•( )

φj
----------------------=

k̂

r̂

τ

τ a r̂( )=

τ rb τ( )←

τ rf τ( )←

τ rI τ( )←
τ
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The final set of tagged cells output in A.3 is then h-refined
and the solution vector is initialized on the new fine mesh
using the prolongation operator from the multigrid scheme.
Taking this new fine mesh as input, the automatic coarse
mesh generator in [17] prepares the multigrid mesh hierar-
chy, and the solver restarts.

In the following sub-sections we present a new strategy for
reducing the refinement parameters to some predetermined
level. The method is optimal since accomplishes this task as
fast as possible. In addition the method ensures that the per-
missible level of the refinement parameter chosen at the out-
set will not vary as the mesh and solution evolve. 

3.1 Equidistribution of Refinement Parameters
Equidistribution aims at producing a mesh which contains
the same level of refinement parameter in each cell. Since the
refinement parameters are stand-ins for the local truncation
error, this goal spreads the remaining discretization error out
evenly over the domain. As this level is reduced, the method
is guaranteed to converge to the correct solution. This princi-
ple guards against over-resolving some features of the flow
while overlooking others. 

In practice, equidistribution is somewhat over-conservative
most of the time. It assumes that all errors are equally impor-
tant to the simulation, and this is certainly not the case most
of the time. However, without additional guidance about
what is important for a particular simulation, equidistribution
simply ensures that everything in the simulation is equally
correct. In addition, if a method can control the LTE distribu-
tion to achieve equidistribution, then it can control the error
to achieve a different goal. Its easy to conceive of inverse-dis-
tance weightings or error weightings that take the local char-
acteristics into account in order to identify those errors that
have the strongest impact on the output functionals of inter-
est. 

Figure 5 shows the histogram of refinement parameters in a
mesh which has achieved equidistribution. Since all cells in
the domain have the same error, they fall in the same bin, and
the histogram looks like a delta function whose height is
Ncells. 

Like most strategies for adaptation, the paradigm of Alg. A is
to start with some initial distribution of refinement param
ters, and drive this distribution toward the idealized distrib
tion shown in fig. 5.

Figure 6 shows the Gaussian-like distribution of refineme
parameters which serves as a model for the histogram prio
h-refinement. A common approach found in the literature
to set the refinement threshold to some fraction of a stand
deviation above the mean of the distribution.[3][4][26]

3.2 A Fresh Look at Refinement Histograms
Figure 7 shows an actual refinement histogram resulting fr
a coarse grid simulation (3775 cells) of flow over an ONER
M6 wing at transonic conditions[25]. This plot bears little
resemblance to the idealized Gaussian-like model shown
figure 6. After normalization, the refinement parameters 
between 0 and 1. The mean value is 0.011 but the stan
deviation 0.04. Moreover, fully 82% of the cells lie below th
mean, and almost 50% have . As a consequenc
this extreme disparity in scales, setting the threshold, t, any
place above the mean addresses the error in only a handf
the most severe cells. Only after the very worst errors 
reduced by many cell refinements will error in the bulk of t
domain be addressed. In shocked flows, the refinem
parameter will be highest in cells with shocks or other stro

Refinement Parameter

# 
of

 c
el

ls

Ncells

Figure 5: Idealized histogram of refinement parameters
in a mesh which has achieved equidistribution.

Mean/Median/Mode

Refinement Parameter

# 
of

 c
el

ls Refinement
Threshold

t

a

Figure 6: Idealized distribution of refinement parameter
prior to h-refinement. Region a contains Na cells. 

Figure 7: Histogram of adaptation parameter for a
coarse mesh simulation of flow around an ONERA
M6 wing at transonic conditions[25]. 

r̂ 0.001<
- 6 -
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non-linear features. As a consequence, this approach will
inadvertently result in a refinement process which over-
resolves shocks and other severe features without ever
addressing smooth regions of the flow. Oversights such as
these have been shown to produce an adaptive procedure
which can actually converge to the wrong solution[26]. 

In earlier work[4] we advocated a filtering approach which
removed cells containing shocks or other strong features in
an attempt to clean up the histogram prior to computing the
mean and standard deviation. Even this approach, however is
dubious given the huge disparity in scales. 

An alternative approach for compressing the scales in the dis-
tribution is to simply take the log of the refinement parameter
prior to binning up the histogram. Figure 8 shows the histo-
gram of the same data as in figure 7 but computed using

 rather than simply . The mean value of this new
distribution is -6.4 and the standard deviation is 4.3. The
rescaled data much more closely resembles the idealized dis-
tribution in figure 5 and values of the mean, median and
mode are within 1.5 units of each other.

3.3 Optimal Threshold Selection
The motivation for choosing base 2 for the logarithms used to
rescale the refinement parameters in the proceeding section
becomes clear when selecting an appropriate threshold. Near
grid convergence, each 2:1 cell refinement using a pth-order
scheme will reduce the LTE by a factor of 2p. With 2:1 cell
refinement and the present second-order scheme, the children
of an h-refined cell will therefore get translated an absolute
distance of 2 units to the left on these base-2 histograms. Fig-
ure 9 illustrates this process. If there are Na cells in region a
of figure 9, and each cell is subdivided into m children, then
a* will contain m Na new cells. 

If our goal is equidistribution, then we desire to build the
delta function of figure 5. An optimal method constructs
these as rapidly as possible. Assuming that the histogram is
decreasing to the right of the modal value, the new histogram
grows most rapidly if the highest point of a* is placed on top
of the mode of the existing distribution. Since the cells in a
move 2 units to the left, the threshold which builds the high-
est new peak is identically 2. 

Subsequent refinements will add to this same peak, and
target level of error will remain constant as the mesh evolv
It is interesting to note that if the threshold is chosen above
below than this value the target error level will continue 
migrate higher or lower (respectively) with subsequent c
refinements. 

Just as refinement moves cells to the left on the histogr
coarsening transfers cells to the right. In the absence
coarsening, these low-error cells will remain in the histogra
and appear as a “tail” to the left of the peak value. Figure
illustrates the evolving histogram. With the threshold chos
as described above, newly refined cells will not alter the h
togram to the left of the peak value, and therefore no ne
refined cells can ever end up in this tail. Since they were c
in the original unadapted mesh, this tail contains only coa
cells, and since coarse cells fill space very quickly, there c
not be very many of them in the domain as compared to 
number of highly refined cells in the peak. In addition, sin
the peak was built via cell subdivision, and the number
children produced per cell is generally constant, the grow
approaching the peak from the left will be very raipd. 

log2 r̂( ) r̂

Figure 8: Histogram of data from fig.7 computed using
 rather than the raw refinement parameter. log2 r̂( )

Refinement Parameter

# 
of

 c
el

ls

a*

a

Figure 9: h-refinement moves the cells in region a to the left
according to the order of accuracy of the scheme. Ifa
contains Na cells, then a* contains m Na cells, where m
is the number of children produced by refining a cell. 

Refinement Parameter

# 
of

 c
el

ls

Coarser cells

Finer cells

Figure 10: Evolution of a histogram for a mesh without
coarsening. 
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e

Skeptics may point out that setting the adaptation threshold
to its optimal value removes the user’s “control” of the adap-
tive process. While this is precisely the goal of automation,
there is a clear need for a user to be able to have some control
over the level of error in the final solution. 

Since the location of the new peak can be controlled by
adjusting the threshold, t, the most efficient way to establish a
desired location of this peak is to set it as early as possible
(i.e. the first adaptation cycle). Subsequent adaptations will
then continue to build on this same peak using the optimal
threshold. This allows the user to set a desirable error level
based upon the histogram of the unadapted coarse mesh, and
then drive the refinement hands-free. 

3.4 An Illustrative Example
Using the coarse mesh simulation from the base-2 histogram
in figure 8, figure 11 shows the evolution of the histogram in
this simulation over the next 5 adaptation cycles. This exam-
ple clearly shows the rapid growth of the peak in the histo-
gram confirming its approach toward equidistribution of the
refinement parameter.

Since this is a real 3-D transonic flow, several issues merit
discussion. Adaptation was driven by the undivided first dif-
ference of velocity magnitude scaled by the local mesh
dimension as presented in §2.6. The adaptive procedure in
Algorithm A tagged cells according to adaptation criteria,
and these tags were then modified to satisfy the smoothness
and mesh validity rules detailed in A.2. The adaptation crite-
ria used in this example was:

,  (11)

where  is the mean value of the magnitude of the refine-
ment parameter rather than the precise modal value as called
for by the theoretical development earlier in this section. Of
course for the narrow peaked histograms shown in the figure,
the mean is close to the mode - it is within one unit at every
cycle after the first. Nevertheless one would expect somewhat
better performance if the location of the true peak was used. 

4 Numerical Examples and Discussion
The LTE estimates and feature detection approaches in §2
have been applied to both simple and complex configurations
in three dimensions. This section begins by presenting results
showing that, when combined with the h-refinement strategy
of §3, both can provide valid approaches to achieve grid-con-
verged solutions. We then present adapted solutions on two
complex configurations to demonstrate the robustness of the
procedure when run “hands-off” on real-world complex con-
figurations. 

 

a r̂j( ) 1      r̂j r̂ 2+>
0      otherwise 

 
 
 
 

=

r̂

Figure 11: Evolution of histogram through 5 adaptation
cycles for transonic ONERA M6 wing case using th
optimal threshold.
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4.1 ONERA M6 Wing
In [17] the baseline Euler solver was validated using the well-
known ONERA M6 wing example.[25] This case considers
the transonic flow over this wing at M∞ =0.84 and α = 3.06°.
Although viscosity was obviously present in the experiment,
the case has been widely studied using inviscid solvers, and a
multitude of Euler solutions are available in the literature for
comparison. 

This flow was computed using both the multilevel τ-extrapo-
lation LTE estimates and scaled first-difference (eq.10) based
feature detection using  as a refinement parameter.
Figure 12a displays both the mesh and solution resulting
from the LTE based adaptation, while 12b contains these
same plots using feature detection. In figure 12, the τ-extrap-
olation analysis used an initial mesh with 9 levels of geome-
try based refinement and then an additional two cycles of
solution-based refinement following the philosophy of §2.4.
The final mesh shown contains 1.8M cells. The feature detec-
tion based results in figure 12b began on a mesh created with
5 levels of geometry-based adaptation and about 30K cells
followed by 6 cycles of adaptation. The final mesh contained
1.9M cells. After 5 levels of adaptive refinement, the mesh
contained about 900K cells and integrated quantities (normal,
axial and side force) were virtually the same as those
obtained on the final (1.9M cell) mesh. The integrated quanti-
ties for both examples changed by less than 0.1% in the last

adaptation cycle suggesting that the results are grid c
verged. 

Lift and drag coefficients for τ-extrapolation were: 0.3041
and 0.0117 while those the feature-detection were 0.3042 
0.0116. Comparison between the two simulations revea
difference of less than 0.04% in the magnitude of the to
force on the wing, and the final meshes have cell cou
within 6% of each other. 

Figure 13 shows convergence of the Cp profile at the 44%
span station and includes an overplot of the experimental d

φ V=

density contours

Figure 12a: Flow over an ONERA M6 wing at M∞ =0.84
and α = 3.06°, adaptation driven by τ-estimates of
LTE in density. The final mesh contains 1.8M cells

Figure 12b: Flow over an ONERA M6 wing at M∞ =0.84
and α = 3.06°, adaptation driven using scaled first
differences of velocity magnitude. The final mesh
contains 1.9M cells

density contours

Figure 13: Pressure profiles from transonic ONERA M6
wing case at 44% span showing evolution of the Cp
history over the last 3 adaptation cycles.

cycles
cycles
cycles
- 9 -
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for the simulation in figure 12b[25]. Behavior at this span sta-
tion is typical and shows convergence of the adaptive process
over the last 4 adaptation cycles. In the figure, the profiles of
the solution after 5 and 6 adaptation cycles are essentially
indistinguishable. Comparison with the experimental data is
generally good and shows the same discrepancies reported by
other inviscid simulations of this viscous flow. In particular,
the separation bubble following the rear shock is not mod-
eled, and this shock is positioned slightly behind that in the
experiment.

4.2 Complex Configurations
Figures 14 and 15 display the first of two examples showing
real-world applications of the adaptation module on complex
geometry. The supersonic canard-controlled missile geome-
try in figure 14a contains several features which make it chal-
lenging to simulate. At angle-of-attack, or any time the
canards are deflected, they will create vortices which may
interact with the tail fins of the missile. Due to the high fine-
ness ratio of the missile, these vortices must convect over 30
canard chord lengths before reaching the tail. Clearly, excess
numerical dissipation can easily destroy this important inter-
action. In addition, the disparity in length scales on the geom-
etry makes this simulation challenging. The canard chord is
only ~1/40th of the body length. The simulation must resolve
not only fine geometric scales like the leading and trailing
edges of the canards, but also the bow shock on the missile,
and the shock system generated by the canards themselves.
Inviscid overset (structured) grid simulations with the Army’s
OVERFLOW-D solver used over 30M points to resolve the
features of this flow field.[27]

Supersonic flow over this missile was computed at ze
degrees roll, and M∞ = 1.6 at α = 3°. The canards are
deflected 15° (nose up). These conditions give a reason
strong interaction between the canard tip vortices and the 
ward pair of the interdigitated tail fins. 

Figure 15 shows contours of velocity magnitude in the d
crete solution of this flow on the adapted mesh shown in 
ure 14. The refinement parameter in equation (10) based
density was used to drive the adaptive process. Both figu
clearly display the trajectory of the canard vortex system
they convect down the body. The final mesh has 4.5M c
and used 6 cycles of adaptive refinement, the last 3 of wh
were confined to the pre-specified adaptation box illustrat
Several axial cutting planes in figure 15 display the evoluti
of the canard vortex as it travels down the missile body. T
computed normal force coefficient on the final mesh matc
the inviscid results in [27] to within 3%. 

One interesting aspect of the missile simulation is that w
the adaptive strategy outlined in §3 and the refinem
parameter from equation (10), the canard vortex and ot
important smooth features in the flow are refined to the sa
level as the shocks. Thus the case can be made that
shocks are not receiving excessive attention from the refi
ment scheme. 

This observation is further supported by the space-shu
configuration displayed in figures 16-18. In this case t
model was composed of 22 separate components, 
included spoilers, flaps, rudders, engine bells, and other g
metric detail. While the elevons and spoilers are nomina
undeflected, some gaps exist, and there is flow leakage 
these control surfaces. 

The half-body, power-off configuration was simulated 
M∞ = 1.5 and α = 8°, and refinement was focused in a bo
extending 3 body lengths in the crossfoot directions trunca
just downstream of the orbiter. Figures 16-18 all display t

a)

b)

Adaptation box

Figure 14: Geometry and adapted mesh for canard-con-
trolled missile example. The final mesh has 4.5M cells
and used 6 cycles of adaptive refinement, the last 3 of
which were confined to the pre-specified adaptation
box illustrated.

top view

b)

Figure 15:  Velocity magnitude contours for flow over a
canard-controlled missile of in fig. 14 at M∞ = 1.6 at
α = 3° with the canards deflected 15° (nose up).
- 10 -
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solution using contours of velocity magnitude, and the
scaled, undivided first difference of density was used as the
adaptation parameter. Five cycles adaptation were carried out
(hands-off) from an initially geometry refined mesh, produc-
ing a final mesh with 8.5M cells. Figure 16 shows a nose-on
view of the grid mirrored to the starboard side, with contours
of the solution on the port side. While the bow and wing
shocks are reasonably well resolved, nearly equal mesh spac-
ing is used in much of the near-body lee-side flow. The flow
structure is reasonably complex, with the body, wing, OMS

pods, etc. all producing massive curved shocks that are c
tured by the refinement. The curvature of these shocks res
in strongly non-linear flow downstream and the refineme
extends into these regions. In addition, both the wing tip v
tex, and a vortex emanating from the gap between con
surfaces are evident in this figure. 

Figure 17 provides additional insight, displaying both th
mesh and solution from a vantage point behind and above
port wing. The cutting plane in this view is located mid-wa
over the starboard wing, and some gaps between the con
surfaces are visible. The bow, canopy, wing and trailing ed
shocks are all clearly visible in this view. Figure 18 is a pr
file shot which contains a cutting plane through the symme
plane to provides a better view of the canopy and b
shocks. 

5 Conclusions and Future Work
We have presented Cartesian mesh adaptation strate
driven by either local truncation error estimates or featu
detection. The adaptation module adds a solution-based m
refinement capability to the geometry-based refinement
the Cartesian mesh generator. Both simple studies and hi
complex 3D examples were presented with very high reso
tion, demonstrating the robustness and utility of the adap
tion. The module produces several million Cartesian ce
per-minute on desktop computers and was demonstrated
complex example geometries with ~107 cells.

An interesting highlight of this work is an optimal strateg
for h-refinement based on log2( ) histograms. This strategy
avoids many of the pitfalls of the mean and standard dev

Figure 16: Computational mesh and velocity contours of
solution for orbiter simulation at M∞ = 1.5 and α = 8°.
The final mesh contains 8.5M cells.

Figure 17: Rear three-quarter view of orbiter geometry and mesh showing gaps between control surfaces and cuttin
through solution at a mid-span location. M∞ = 1.5, α = 8°, velocity contours 
- 11 -
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tion based approaches found in the literature. For hierarchal
meshes, the approach is optimal in that it maximally equidis-
tributes the refinement parameter for a given number of adap-
tation cycles. We believe it to be more reliable and robust
than mean and standard deviation based approaches. 

Our initial investigation of multilevel local truncation esti-
mates was disappointing due to the irregularities in the mesh
at the embedded boundaries and interfaces. While these com-
plications can be overcome, they affect more of the mesh
than was initially expected. More investigation of this prob-
lem is needed. When applied to a model problem with a
known analytic solution, these truncation error estimates re-
confirmed the accuracy advantages in both LTE and global
error offered by Cartesian meshes.

Future work will focus on several outstanding topics. The
behavior of the refinement strategy needs to be validated over
a wider range of input conditions. While this strategy has
been performed extremely well in initial investigations of
flows with free stream Mach numbers from 0.8-1.6, it has not
been exhaustively tested for broader conditions. The strategy
assumes that the histogram of refinement parameters is
monotonically decreasing to the right of the median bin, and
the validity of this assumption should be investigated under
more extreme conditions. A second topic for further investi-
gation is selection of an initial threshold to control the overall
error level in the simulation. Currently this is done by inspec-
tion of the coarse mesh histogram, but a more automated pro-
cess would be desirable. We have also not implemented a
mesh coarsening algorithm, and while this is not a major con-
cern for steady flows, one will be needed for unsteady appli-
cation in the future. Finally, adaptation is currently “focused”
through the use of pre-specified adaptation regions. Such

regions could be automatically generated using character
information from the flow to appropriately weight o
unweight refinement parameters depending upon the ce
location in the domain and the input Mach number. 
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8 Appendix
The supersonic-vortex model problem discussed in §2.1 
figures 2 and 3 was performed to measure the local trunca
error of the embedded-boundary Cartesian solver. In t
appendix, we present details of this investigation and co
pare the Cartesian results with 3 other meshing systems
addition to the nested Cartesian grids, this experiment w
performed using three popular body-fitted meshing schem
and the same underlying solver (upwind, with linear-reco
struction). Regular (structured) quad, right triangular, a
“quality” triangular[20] body-fit meshes were used. Figur
A.1 shows the second-coarsest mesh of each of these typ
grid. Four meshes of each type were used in the investiga
and the meshes contained from 128 to 7809 control volum
Special care was taken to match the numbers of control 
umes for each mesh type as closely as possible. 

The example was computed with an inner Mach numb
Min = 3.0, and taking pin = 1/γ, ρin = 1, ri = 1 and ro = 1.9.
Each case was initialized with the exact solution and the LTE
(of density) within each cell was computed using eq.(4) 
applying the residual operator without using flux limiters.

 Table A.1 contains the L1 norm of the LTE for each of the 16
simulations. The simulations for each of the mesh types c
related closely to a straight line, and the asymptotic slope
each are given in the table. 

Some aspects of these data merit discussion. As note
§2.2, the rate of convergence of the LTE for all mesh types
are similar except for that of the “quality” triangular mes
While all the other mesh types demonstrated second-or
accuracy, results for this grid system were only slightly bet
than first-order. Since this mesh is not quite uniform, t
stencils used for the gradient estimation and reconstruc

x

y

“Quality”
Triangles

Right
Triangles

Regular
Quads

Min=3.0

Figure A.1: Representative “Quality” Triangular, Right Tri-
angular, and Regular Quad body-fit meshes used in LTE 
investigation. These meshes are the second coarsest
used and have 505, 525 and 525 control volumes 
(respectively).
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on all of the “quality” meshes are all slightly irregular. Since
every stencil is irregular, each is polluted to some degree by
stretching, cancellation of errors cannot occur, and the result
is a marked degradation in accuracy. 

 These results contrast with earlier results for a similar prob-
lem using nearly-equilateral triangles[18]. That investigation
showed that regular equilateral triangles performed as well
(or better) than regular quads or right triangles. In this case,
however, the “quality” mesh is not equilateral, although all
the triangles are well formed as guaranteed by the Ruppert’s
2-D delaunay technique in ref.[20]. Quality 2-D meshes were
chosen for this investigation since it is not possible to gener-

ate uniform meshes of equilateral tetrahedra in 3-D. As
result, tetrahedral mesh generators typically resort to prod
ing “quality” meshes that guarantee some angle criterion
everywhere met, just as Ruppert’s Delaunay algorithm do
in 2-D.

The structured quad and right-triangular meshes are subs
tially smoother than the quality triangular meshes. Nevert
less the LTE measurements indicate that even the m
irregularity in their stencil degrades their performance. Wh
both provide second-order accuracy, the absolute error le
is from 6 to 10 times worse than the Cartesian grid’s perf
mance where irregularity is confined to the boundary.

Cartesian Mesh with Embedded Boundary
 # of Control volumes Measured L1 (density) Error

138 0.03065
507 0.00930

1928 0.00246
7549 0.00059   Asymptotic slope = 2.11

Body-Fit Structured (Quad) Mesh
 # of Control volumes Measured L1 (density) Error

144 0.30998
525 0.09223

2001 0.02422
7809 0.00629   Asymptotic slope = 1.94

Body-Fit Right Triangular Mesh
 # of Control volumes Measured L1 (density) Error

144 0.37926
525 0.07571

2001 0.01565
7809 0.00347   Asymptotic slope = 2.28

Body-Fit Quality  Triangular Mesh
 # of Control volumes Measured L1 (density) Error

128 0.52552
505 0.22529

1918 0.11936
7490 0.05940   Asymptotic slope = 1.02

Table A.1: L1–Norm of LTE in density for each of the 16 meshes used in the supersonic vortex investigation. Th
“Quality” triangulation meshes were produced using the quality Delaunay triangulation algorithm of ref.[20] an
had no angle less than 29°.
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